organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2-Dichloro-N-(3-nitrophenyl)acetamide

B. Thimme Gowda,^a* Sabine Foro^b and Hartmut Fuess^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 27 December 2007; accepted 31 December 2007

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.099; data-to-parameter ratio = 13.4.

The conformation of the N-H bond in the structure of the title compound (3NPDCA), C₈H₆Cl₂N₂O₃, is anti to the metanitro group, similar to that in the structures of 2-chloro-N-(3nitrophenyl)acetamide (3NPCA) and 2,2,2-trichloro-N-(3nitrophenvl)acetamide (3NPTCA), and the meta-chloro group in 2,2-dichloro-N-(3-chlorophenyl)acetamide (3CPDCA). The geometric parameters of 3NPDCA are similar to those of 2,2dichloro-N-phenylacetamide, 3CPDCA, 3NPCA, 3NPTCA and other acetanilides. Intermolecular N-H···O hydrogen bonds link the molecules into chains running along the b axis.

Related literature

For related literature, see: Gowda & Weiss (1994); Gowda et al. (2000, 2006, 2007).

a = 9.6092 (6) Å

b = 10.6487 (7) Å

c = 19.868 (1) Å

Experimental

Crystal data C₈H₆Cl₂N₂O₃ $M_r = 249.05$ Orthorhombic, Pbca V = 2033.0 (2) Å³ 7 - 8Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur
diffractometer with Sapphire
CCD Detector
Absorption correction: multi-scan
(SCALE3 ABSPACK;

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.098$	independent and constrained
S = 1.10	refinement
2072 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO1^{i}$	0.833 (16)	2.081 (17)	2.907 (2)	171 (2)
Symmetry code: (i) x	$z = \frac{1}{2}, -y + \frac{1}{2}, -z =$	+ 1.		

 $\mu = 0.63 \text{ mm}^{-1}$ T = 299 (2) K

 $R_{\rm int}=0.022$

 $0.60 \times 0.52 \times 0.24$ mm

Oxford Diffraction, 2007) $T_{\min} = 0.706, T_{\max} = 0.865$

1614 reflections with $I > 2\sigma(I)$

11267 measured reflections 2072 independent reflections

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2307).

References

- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, 03364.
- Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720
- Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.
- Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.
- Oxford Diffraction (2004). CrysAlis CCD. Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.
- Oxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o382 [doi:10.1107/S160053680706881X]

2,2-Dichloro-N-(3-nitrophenyl)acetamide

B. T. Gowda, S. Foro and H. Fuess

Comment

As part of a study of the effect of ring and side chain substitutions on the solid state structures of acetanilides (Gowda *et al.*, 2000, 2006, 2007), in the present work, the crystal structure of 2,2-dichloro-*N*- (3-nitrophenyl)-acetamide (3NPDCA) has been determined to explore the effects of polar substituent groups on the structures of N-aromatic amides. The conformation of the N—H bond in the structure of 3NPDCA (Fig.1) is *anti* to the *meta* nitro group, similar to that in the structure of 2-chloro-*N*-(3-nitrophenyl)-acetamide (3NPCA) (Gowda *et al.*, 2007) and 2,2,2-trichloro-*N*-(3-nitrophenyl)-acetamide (3NPTCA)(Gowda *et al.*, 2000) and *meta* chloro group in 2,2-dichloro-*N*-(3-chlorophenyl)-acetamide (3CPDCA)(Gowda *et al.*, 2006). The geometric parameters in 3NPDCA are similar to those of 2,2-dichloro-*N*-(phenyl)-acetamide, 3CPDCA, 3NPCA, 3NPTCA and other acetanilides. The intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains running along the *b* axis (Fig. 2).

Experimental

The title compound was prepared similar to the literature method (Gowda and Weiss, 1994). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NQR spectra (Gowda and Weiss, 1994). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were located in difference map with C—H = 0.89 (3)–0.96 (3) Å and N—H distance was restrained to 0.86 (2) %A. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Partial packing view showing the hydrogen bonding as dashed lines H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x - 1/2, 1/2 - y, 1 - z]

2,2-Dichloro-N-(3-nitrophenyl)acetamide

Crystal data	
$C_8H_6Cl_2N_2O_3$	$F_{000} = 1008$
$M_r = 249.05$	$D_{\rm x} = 1.627 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4893 reflections
a = 9.6092 (6) Å	$\theta = 2.8 - 27.8^{\circ}$
b = 10.6487 (7) Å	$\mu = 0.63 \text{ mm}^{-1}$
c = 19.868 (1) Å	T = 299 (2) K
$V = 2033.0 (2) \text{ Å}^3$	Prism, yellow
Z = 8	$0.60 \times 0.52 \times 0.24 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Detector	2072 independent reflections
Radiation source: fine-focus sealed tube	1614 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 299(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
Rotation method data acquisition using ω and ϕ scans.	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007)	$h = -12 \rightarrow 11$
$T_{\min} = 0.706, \ T_{\max} = 0.865$	$k = -11 \rightarrow 13$
11267 measured reflections	$l = -24 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0385P)^2 + 1.4567P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.044$
2072 reflections	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Determine the state of the stat	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0230 (13) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.03253 (19)	0.14098 (18)	0.60262 (10)	0.0344 (4)
C2	0.1408 (2)	0.05696 (19)	0.61012 (11)	0.0365 (4)
H2	0.204 (2)	0.043 (2)	0.5757 (12)	0.044*
C3	0.1543 (2)	-0.00244 (19)	0.67144 (11)	0.0380 (5)
C4	0.0653 (2)	0.0166 (2)	0.72466 (11)	0.0453 (5)
H4	0.075 (3)	-0.025 (2)	0.7632 (14)	0.054*
C5	-0.0418 (2)	0.1009 (2)	0.71576 (12)	0.0490 (6)
H5	-0.103 (3)	0.122 (2)	0.7521 (14)	0.059*
C6	-0.0584 (2)	0.1632 (2)	0.65542 (11)	0.0426 (5)
H6	-0.131 (3)	0.220 (2)	0.6503 (13)	0.051*
C7	0.1102 (2)	0.24984 (19)	0.50064 (11)	0.0357 (4)
C8	0.0552 (2)	0.3297 (2)	0.44287 (11)	0.0398 (5)
H8	-0.034 (3)	0.352 (2)	0.4488 (11)	0.048*
N1	0.01034 (17)	0.20745 (17)	0.54149 (9)	0.0381 (4)
H1N	-0.0711 (18)	0.227 (2)	0.5320 (12)	0.046*
N2	0.2700 (2)	-0.09083 (18)	0.67926 (10)	0.0491 (5)
01	0.23372 (15)	0.22854 (16)	0.50684 (9)	0.0532 (5)
O2	0.3669 (2)	-0.08426 (19)	0.63930 (10)	0.0664 (5)
O3	0.2672 (2)	-0.16436 (19)	0.72637 (10)	0.0759 (6)
Cl1	0.15452 (6)	0.46874 (5)	0.43763 (3)	0.0529 (2)
C12	0.06927 (8)	0.24208 (7)	0.36778 (3)	0.0661 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0270 (9)	0.0403 (10)	0.0360 (10)	-0.0056 (8)	-0.0003 (8)	0.0025 (8)
C2	0.0334 (10)	0.0388 (10)	0.0374 (10)	-0.0034 (8)	-0.0001 (8)	0.0008 (8)
C3	0.0363 (10)	0.0346 (10)	0.0430 (11)	-0.0033 (8)	-0.0046 (9)	0.0017 (8)
C4	0.0494 (13)	0.0483 (12)	0.0382 (11)	-0.0071 (10)	-0.0014 (10)	0.0065 (10)
C5	0.0460 (13)	0.0583 (14)	0.0428 (12)	-0.0043 (11)	0.0103 (10)	-0.0006 (10)
C6	0.0311 (10)	0.0487 (12)	0.0479 (12)	-0.0012 (9)	0.0036 (9)	0.0014 (10)
C7	0.0272 (9)	0.0389 (10)	0.0409 (10)	0.0013 (8)	-0.0009 (8)	0.0020 (8)

supplementary materials

C8	0.0307 (10)	0.0479 (12)	0.0409 (11)	0.0006 (9)	-0.0001 (9)	0.0045 (9)
N1	0.0239 (8)	0.0503 (10)	0.0401 (9)	0.0018 (7)	-0.0002 (7)	0.0076 (8)
N2	0.0507 (11)	0.0446 (10)	0.0521 (11)	0.0028 (9)	-0.0091 (10)	0.0056 (9)
01	0.0258 (7)	0.0698 (11)	0.0641 (10)	0.0050 (7)	0.0044 (7)	0.0272 (8)
02	0.0606 (11)	0.0718 (12)	0.0668 (12)	0.0250 (10)	0.0086 (10)	0.0109 (10)
03	0.0786 (13)	0.0713 (12)	0.0778 (13)	0.0122 (11)	-0.0056 (11)	0.0361 (11)
Cl1	0.0558 (4)	0.0395 (3)	0.0635 (4)	-0.0031 (2)	-0.0001 (3)	0.0064 (2)
Cl2	0.0740 (5)	0.0778 (5)	0.0467 (4)	-0.0200 (4)	-0.0084 (3)	-0.0116 (3)
Geometric parar	neters (Å, °)					
C1—C2		1.380(3)	C6–	-H6	0.93	3 (3)
C1—C6		1.386 (3)	С7—	-01	1.21	5 (2)
C1—N1		1.422 (2)	С7—	-N1	1.33	35 (3)
C2—C3		1.379 (3)	С7—	C8	1.52	23 (3)
С2—Н2		0.93 (2)	C8–	Cl1	1.76	54 (2)
C3—C4		1.376 (3)	C8–	C12	1.76	55 (2)
C3—N2		1.464 (3)	C8–	-H8	0.90)(3)
C4—C5		1.377 (3)	N1-	-H1N	0.83	33 (16)
C4—H4		0.89 (3)	N2-	03	1.22	20 (3)
C5—C6		1.380 (3)	N2-	02	1.22	26 (3)
С5—Н5		0.96 (3)				
C2—C1—C6		120.30 (19)	C1-	-C6—H6	120	.0 (16)
C2-C1-N1		121.86 (17)	O1–	C7N1	125	.26 (19)
C6-C1-N1		117.83 (18)	O1–	-С7-С8	121	.32 (19)
C3—C2—C1		117.65 (19)	N1-	-С7-С8	113	.42 (17)
С3—С2—Н2		120.9 (15)	С7—	-C8Cl1	108	.99 (14)
C1—C2—H2		121.5 (15)	С7—	-C8-Cl2	108	.35 (15)
C4—C3—C2		123.5 (2)	Cl1-		110	.62 (12)
C4—C3—N2		119.03 (19)	С7—	-C8H8	112	.2 (15)
C2—C3—N2		117.42 (19)	Cl1-	—С8—Н8	107	.9 (16)
C3—C4—C5		117.6 (2)	Cl2-	—С8—Н8	108	.8 (15)
С3—С4—Н4		121.6 (17)	С7—	-N1-C1	125	.44 (17)
С5—С4—Н4		120.8 (17)	С7—	-N1—H1N	116	.8 (17)
C4—C5—C6		120.8 (2)	C1-	-N1—H1N	117	.5 (17)
C4—C5—H5		120.9 (16)	O3–	-N202	123	.4 (2)
С6—С5—Н5		118.2 (16)	O3–	-N2-C3	118	.5 (2)
C5-C6-C1		120.2 (2)	O2–	-N2-C3	118	.10 (18)
С5—С6—Н6		119.8 (16)				
C6—C1—C2—C	3	-0.2 (3)	N1-	C7C8Cl1	131	.85 (17)
N1-C1-C2-C	3	179.62 (18)	O1–	C7C8Cl2	71.9	9(2)
C1—C2—C3—C	4	0.8 (3)	N1-	C7C8Cl2	-10	7.71 (18)
C1—C2—C3—N	2	-179.58 (18)	O1–	-C7-N1-C1	6.6	(4)
C2—C3—C4—C	5	-0.8 (3)	C8–	-C7-N1-C1	-17	3.76 (18)
N2-C3-C4-C	5	179.6 (2)	C2-	-C1-N1-C7	-35	.6 (3)
C3—C4—C5—C	6	0.1 (3)	С6—	-C1-N1-C7	144	.2 (2)
C4—C5—C6—C	1	0.5 (3)	C4	-C3-N2-O3	15.6	5 (3)
C2-C1-C6-C	5	-0.4 (3)	C2-	-C3-N2-O3	-16	4.0 (2)
N1—C1—C6—C	5	179.8 (2)	C4-	-C3-N2-O2	-16	2.0 (2)

01—C7—C8—Cl1	-48.5 (3)	C2-C3-N2-O2		18.3 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1N···O1 ⁱ	0.833 (16)	2.081 (17)	2.907 (2)	171 (2)
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $-z+1/2$, $-z+1/$	·1.			

Fig. 2